Status and phase
Conditions
Treatments
About
This study aims to evaluate the efficacy of genotype-informed Bayesian dosing of tacrolimus in optimising drug exposure among paediatric solid organ transplant recipients. By tailoring tacrolimus dosage based on individual genetic makeup and using Bayesian modeling to predict drug levels, the researchers hope to increase the likelihood of achieving therapeutic drug concentrations while minimising the risk of adverse events associated with subtherapeutic or supratherapeutic exposure.
Full description
Tacrolimus, a calcineurin inhibitor is an effective immunosuppressant for solid organ transplants (SOT). Due to its narrow therapeutic index and individual variability in its pharmacokinetics (PK), this can lead to inefficacy, toxicities and suboptimal outcomes.
Tacrolimus is typically administered orally twice daily, with a starting dose scaled linearly to body weight (mg/kg). Dose is then adjusted based on measured steady-state trough (pre-dose) whole blood tacrolimus concentrations, to bring to within a desired "therapeutic range". However, this dosing strategy remains associated with incomplete effectiveness and toxicities in a substantial proportion of recipients, related to under- or over-exposure respectively.
Cytochrome P450 CYP3A4 and CYP3A5 enzymes metabolise tacrolimus, with research suggesting a link between the CYP3A5 genetic makeup and achieving tacrolimus target levels. Genotyping for the CYP3A5 gene prior to SOT can identify individuals who are at risk of high or low tacrolimus levels, and guide tacrolimus dosing prior to transplantation. Bayesian prediction is a pharmaco-statistical technique that uses population pharmacokinetic data and individual patient characteristics to accurately predict the tacrolimus dose required to achieve a target concentration. Subtherapeutic levels post-transplant, increases the risk of acute rejection. Furthermore, failure to maintain the target tacrolimus range for the first 6 months significantly raises the chance of rejection, donor-specific antibody formation and graft loss.
Genotype informed dosing algorithms may optimise and ameliorate sub-therapeutic levels, thus potentially reducing the risk of rejection or toxicity.
To determine if implementing a genotype-informed Bayesian dosing of tacrolimus is superior to standard weight-based dosing and empiric dose adjustment to trough concentrations post SOT, a combined retrospective/prospective cohort study in Solid Organ Transplant recipients will be undertaken at The Royal Children's Hospital Melbourne.
The outcomes from the Retrospective cohort (over a 5-year period) using clinician-led therapeutic drug monitoring will be compared with the Prospective cohort (n=45), using genotype to predict initial tacrolimus doses and predictive Bayesian dosing for ongoing tacrolimus dosing over a 8-week period.
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
Participants will be assigned to the prospective arm if treated at Royal Children's Hospital who are receiving a solid organ transplant (SOT) (excluding repeat graft in liver transplant recipients) and who will be on tacrolimus as one of the main immunosuppressants post-transplant.
Inclusion Criteria:
Exclusion Criteria:
Primary purpose
Allocation
Interventional model
Masking
45 participants in 1 patient group
Loading...
Central trial contact
Rachel Conyers
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal