Status and phase
Conditions
Treatments
About
The purpose of this study is to investigate the role of ET-1 in mediating vasoconstrictor tone in hypertensive postmenopausal women (PMW) alone and in combination with a commonly prescribed Angiotensin II (ANG II) antagonist. The long term goal is to understand the mechanisms contributing to hypertension (HTN) in PMW. This study is the first step in reaching our goal.
Full description
Cardiovascular disease (CVD) is the leading cause of death in women, and mortality from CVD is higher in PMW compared to age-matched men. PMW are at a greater risk for developing HTN, a major risk factor for CVD. They are also more likely to have uncontrolled or resistant HTN despite medication.
ANG II is a common therapeutic target for the treatment HTN. ANG II blockade is highly effective in normalizing blood pressure (BP) in hypertensive male rats, but does not reduce BP to the same degree in hypertensive post menopausal female rats. Endothelin-1 (ET-1) receptor antagonists reduce BP in hypertensive postmenopausal female rats, but have no effect on males. Thus the mechanisms contributing to HTN in female rats and likely women, particularly after menopause, are complex, multifactorial and not completely understood.
After menopause, the vasoconstrictor effects of both ANG II and ET-1 are amplified in animal models. As such, these two predominant pathways may contribute to the high incidence of HTN in PMW. ET-1 is a potent vasoconstrictor produced and released by endothelial cells that binds to two receptor subtypes, ET-A and ET-B. While both receptors are located on vascular smooth muscle (VSM) and mediate vasoconstriction, ET-B receptors are also located on the endothelium and mediate vasodilation via nitric oxide.
Importantly, the production of ET-1 and expression of ET-A and B receptors can be modulated by hormones such as estradiol and ANG II. Estradiol attenuates ET-1 production, and reduces ET-1 mediated vasoconstriction via an ET-B receptor mechanism in vitro. Thus, decline in estradiol after menopause may enhance vasoconstrictor tone via ET-1 and lead to HTN. ET-1 also potentiates the vasoconstrictor effects of ANG II since the vasoconstrictor and hypertensive effects of ANG II are ameliorated by ET-1 receptor blockade. Additionally, ANG II stimulates the synthesis of ET-1 and upregulates ET-A and ET-B receptor expression on VSM. The ANG II receptor antagonist Losartan reduces ET-A and ET-B receptor expression and attenuates the constrictor effects of ET-1 in a diabetic rat model. Therefore, ET-1 is an important independent factor contributing to HTN in PMW, but therapeutic agents targeting both ANG II and ET-1 may have greater efficacy given their interactions.
The investigators propose a comprehensive assessment of vascular function by measuring blood flow responses in the cutaneous circulation during perfusion of ET-1 receptor antagonists via microdialysis, combined with measures of intracellular protein and receptor expression of endothelial cells and skin punch biopsies collected from normotensive and hypertensive PMW. Investigators central hypothesis is that hypertensive PMW have greater ET-1 mediated vasoconstrictor tone due to increased ET-1 expression, down-regulation of ET-B receptors on endothelial cells and up-regulation of both ET-A and ET-B receptors on VSM leading to increased vasoconstriction and HTN. Investigators further hypothesize that ANG II exacerbates the increase in ET-1, and ET-A and ET-B receptor expression contributing to exaggerated constriction with HTN in PMW.
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
Inclusion Criteria: - Women.
Exclusion Criteria:
Primary purpose
Allocation
Interventional model
Masking
8 participants in 2 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal