Status
Conditions
Treatments
About
The investigators hypothesis is that the adjustment of the inspiratory time may optimize the distribution of ventilation and increase tidal volume, producing potential therapeutic effects on the displacement of secretions and respiratory mechanics. The objective of this study was To evaluate the effects of hyperinflation with the ventilator associated with increased inspiratory time on respiratory mechanics.
Full description
A randomized crossover clinical trial was conducted with 38 mechanically ventilated patients with pulmonary infection. The order of hyperinflation or control (without changes in parameters) was randomized. Hyperinflation was performed for 5 minutes in the controlled pressure ventilation mode, with progressive increases of 5cmH2O until reaching a maximum pressure of 35cmH2O, maintaining PEEP. After reaching 35cmH2O, the inspiratory time and respiratory rate were adjusted so that the inspiratory and expiratory flows reached the baseline, respectively. Static compliance (Cest, sr), total resistance (Rsr) and airway resistance (Rva), slow pressure drop (ΔP2) and peak expiratory flow (PEF) were assessed before (PRÉ), immediately after the maneuver (POSSimed) and after aspiration (POSPasp). Two-way ANOVA was used for repeated measurements with Tukey post-test, considering a significant p <0.05.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
38 participants in 2 patient groups
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal