Status
Conditions
Treatments
Study type
Funder types
Identifiers
About
The purpose of this study is to 1) examine the differences in walking function and movement patterns between individuals with diabetic peripheral neuropathy and healthy adults with no known conditions; 2) examine if receiving feedback on walking form will help change walking patterns; and 3) examine the feasibility, safety, and preliminary effects of walking training with feedback on walking function in individuals with diabetic peripheral neuropathy.
Full description
Over 34 million adults in the United States are living with Diabetes Mellitus (DM). Diabetic peripheral neuropathy (DPN) is the most common complication, affecting 50% of individuals with DM. Consequences of DPN include reduced sensation and feedback from the foot and lower limb and increased plantar pressures, predisposing patients to ulcers and lower extremity amputation. Individuals with DPN experience decreased quality of life compared with their healthy and non-neuropathic DM peers, and report problems with mobility, daily activities, pain, and discomfort. Additionally, people with DPN display reduced functional ambulation, step counts, and walking speed. Though increases in physical activity and functional capacity have been associated with improvements in quality of life, DPN poses a unique challenge in mitigating risk while pursuing traditional exercise and walking programs.
Traditional gait training programs used to improve walking function may increase ulceration risk, making these interventions unsuitable if not tailored for people with DPN. The goal of this study is to elucidate the underlying biomechanical mechanisms contributing to the inter-relationships between plantar pressure and propulsion in individuals with DPN, and to examine the safety and feasibility of using real-time biofeedback to modify plantar pressure and propulsion during gait.
The aims of this study are to evaluate (1) biomechanical mechanisms contributing to abnormal plantar pressure and propulsion during gait in individuals with DPN; (2) biofeedback-induced changes in plantar pressure, propulsion, and biomechanics during gait in individuals with DPN and age-similar controls; and (3) the acceptability, feasibility, safety, and preliminary effects of gait training in individuals with DPN. Insights into the biomechanical mechanisms underlying plantar pressure and propulsion in people with DPN will allow for the design of more informed and effective gait rehabilitation interventions aimed at preventing deleterious outcomes such as ulceration and amputation that can be tailored to individual patient characteristics.
Able-bodied participants will complete three experimental sessions and participants with DPN will complete a total of seven experimental sessions. Each session will be approximately 2-3 hours in duration.
Enrollment
Sex
Ages
Volunteers
Inclusion and exclusion criteria
Inclusion Criteria for All Participants:
Inclusion Criteria for Participants with DPN:
Exclusion Criteria for Healthy Able-Bodied Individuals:
Exclusion Criteria for All Participants:
Primary purpose
Allocation
Interventional model
Masking
50 participants in 3 patient groups
Loading...
Central trial contact
Nicole Rendos, PhD
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal