Status
Conditions
Treatments
About
Therapeutic treatment is yet available for declining memory, which is an impairment affecting the quality of life for many older adults and patients with cognitive impairment. Cognitive training with an immersive video game promises to drive hippocampal-cortical plasticity and associated gains that can restore memory capability or provide therapeutic treatment for memory deficits.
Full description
A hallmark of higher cognition is the capability for flexible association of diverse bits of information stored in memory, such that experiences can be remembered in detailed and distinct terms (i.e., high-fidelity long-term memory (LTM)). Interventions capable of sustaining improved learning and flexible association of new information into LTM remain elusive. Interventions have yet to be developed to attenuate the decline of high-fidelity LTM in normal aging or provide therapeutic treatment for patients with cognitive impairment without dementia (i.e., MCI).
This project applies a translational neuroscience approach in development of a cognitive training intervention that targets sustained improvement in capabilities for LTM and cognitive control. Treatments use commercially available head-mounted display Virtual Reality (VR) technology and tablet computers to present a deeply immersive spatial wayfinding video game. Based on preliminary results, the hypothesis is that immersion in a game to navigate errands through unfamiliar, visually complex neighborhoods (i.e., wayfinding) will be an effective means to environmental enrichment, which refers to a process whereby new and complex experiences bring change to brain and behavior.
The significance of this platform is from the effects in brain and behavior arising from cognitive training, which can generalize to improvements in untrained capability for high-fidelity LTM. Research in rodents and humans shows that learning a new, enriched environment spurs the healthy function of the hippocampus and supports lifelong neurogenesis. Adult-borne hippocampal neurogenesis has been linked as the neurobiological basis for the formation of new, high-fidelity memories.
The Labyrinth spatial wayfinding game was developed in-house to incorporate full scientific rigor, as with procedures in any properly controlled behavioral experiment. The game uses 3D and 2.5D computer graphics tools, as well as numerous levels of adaptive challenge, to deliver a dynamic, engaging experience for participants throughout the training regimen. Training can be administered with and without participant ambulation in movement through wayfinding runs.
A participant's pre- and post-training assessments will occur promptly before and after their 15 to 20-hour training regimen, including collection of functional MRI (fMRI) and structural MRI data. Cognitive outcome measures will assess capabilities for high-fidelity LTM retrieval.
The a priori hypothesis is that effectiveness of the wayfinding game intervention would be evidenced by post-training improvements in retrieval of high-fidelity LTM and associated cognitive control capabilities. FMRI results associated with the measured cognitive improvements will localize changes in functional brain networks that support gains in memory capabilities. Structural MRI measures will assess morphometric and volumetric changes from pre- to post-training assessments.
Enrollment
Sex
Ages
Volunteers
Inclusion criteria
Exclusion criteria
Primary purpose
Allocation
Interventional model
Masking
50 participants in 6 patient groups, including a placebo group
Loading...
Data sourced from clinicaltrials.gov
Clinical trials
Research sites
Resources
Legal